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Abstract

Model checking is a proven successful technology for verifying hardware. It
works, however, on only �nite state machines, and most software systems have
in�nitely many states. Our approach to applying model checking to software
hinges on identifying appropriate abstractions that exploit the nature of both
the system, S, and the property, �, to be veri�ed. We check � on an abstracted,
but �nite, model of S.
Following this approach we veri�ed three cache coherence protocols used in
distributed �le systems. These protocols have to satisfy this property: \If a
client believes that a cached �le is valid then the authorized server believes that
the client's copy is valid." In our �nite model of the system, we need only
represent the \beliefs" that a client and a server have about a cached �le; we
can abstract from the caches, the �les' contents, and even the �les themselves.
Moreover, by successive application of the generalization rule from predicate
logic, we need only consider a model with at most two clients, one server, and
one �le. We used McMillan's SMV model checker; on our most complicated
protocol, SMV took less than 1 second to check over 43,600 reachable states.



1 Motivation: Theorem Proving and Model Check-

ing

Software systems keep growing in size and complexity. Many large, complex
software systems must guarantee certain critical functional, real-time, fault-
tolerant, and performance properties. Proving that such a system satis�es these
kinds of properties can increase our con�dence that it will operate correctly
and reliably. Proofs based on formal, rather than informal, techniques make
our reasoning precise; moreover, they are amenable to mechanical aids such as
syntax and semantics checkers.

Formal reasoning entails comparing two formal objects, e.g., establishing
the correctness of a program with respect to a speci�cation or showing that
one concurrent process simulates another. The starting point is having two
formal objects. There are two general approaches to showing the correspondence
between these two objects: theorem proving and model checking. We argue that
model checking should and will play a larger role in reasoning about software
systems than it does today.

The traditional approach to formal reasoning about software is program
veri�cation where one formal object is the program text and the other is a
speci�cation written in some mathematical logic. The formal technique used to
show a correspondence between the two objects is based on theorem proving.
Over time this approach has been shown to work on increasingly larger and
larger programs, especially as the tool support like theorem provers and proof
checkers has become more and more sophisticated. Yet, it still has drawbacks:

� The size of a program we can prove correct is on the order of only a couple
thousand lines of code [14].

� To do such a proof requires highly-skilled people, such as theorem-proving
experts, domain experts, or both.

� The human time to do such a proof is on the order of months or even
years; the machine time, on the order of hours [14].

� In the course of such a proof, we are often forced to prove \obvious" or
\uninteresting" theorems; the amount of e�ort to prove them is often the
same as that for proving the \essential" property of interest.

We believe that there is a time and place for program veri�cation, e.g., for
key components of a safety-critical system. In this paper, however, we directly
address the concerns of the vast majority of the software engineering community,
which questions whether the cost in time, e�ort, and resources for program
veri�cation is worth the eventual bene�t gained.

We suggest a radically di�erent tack: model checking. The two formal objects
compared are a �nite state machine model of the software system, and as before,
a speci�cation written in some mathematical logic.
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Model checking is a proven successful veri�cation technology in the hard-
ware community. For example, it has been used to �nd bugs in published
circuits [5, 16], the cache coherence protocol for the Encore Gigamax multi-
processor [32], the IEEE Futurebus+ Standard [10], and telephone switching
systems [18]. It has been used to prove safety and liveness properties of the
T9000 virtual channel processor [4].

Fundamental to model checking is its reliance on �nite state machines.
Model checking exploits this �niteness property by performing an exhaustive
case analysis of the machine's set of states. Recent technological advances have
greatly improved the ability to apply this technique to real systems: model
checkers can now check systems on the order of 1020 states, and for some sys-
tems this number can be as large as 101300 [11].

The rationale behind why theorem proving has been the primary approach
for reasoning about software is that software systems are, in general, in�nite
state machines. We thus rely on induction to prove in a �nite number of steps
a property over in�nite domains. Model checking, at �rst glance, seems inap-
propriate.

There are three methodological reasons for why model checking is appropri-
ate. First, the inductive arguments used in proof work well for highly structured
components (e.g., generic data types like sets and mappings), but fail at the sys-
tem level, because of discontinuities in value spaces and irregularities in software
structure. We are forced to resort to huge case analyses anyway, perhaps with
inductive proofs performed only locally. Thus, though it may seem restrictive to
use model checking because we cannot prove something about all possible values
drawn from an in�nite domain, it is exactly the kind of technology needed to
handle the huge case analyses at the system level.

Second, checking a model of the system rather than the system itself raises
the level of abstraction at which we do our formal reasoning. Though, we
may fall short of doing \exact" reasoning about the original system, we can
more quickly, with less e�ort, and completely automatically do \approximate"
reasoning. (An argument must be made, of course, that the model checked is
not so abstract that it trivially satis�es the property of interest.)

Third, as the hardware community has discovered, model checking has been
tremendously successful at �nding bugs in hardware designs. It is more common
to �nd that a system has errors than that it is correct. The same is true, if not
more so, for software. Thus, model checking can help software designers �nd
bugs in their designs, where a design is a natural abstraction of the actual
working system. Moreover, if the goal of formal reasoning is to �nd bugs, then
it matters less that we do only \approximate," rather than \exact," reasoning.

Thus, though theorem proving has its place, e.g., for doing inductive ar-
guments and low-level program veri�cation, model checking can complement
theorem proving e�orts. It is worth exploring all avenues as to how.

The target audience of this paper are people who build large, complex soft-
ware systems for their livelihood. With this case study, we intend to alert them
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that a technology that they might have shied away from before because of its
limitations is worth serious consideration because of its outweighing bene�ts.
Thus, our audience is not the model checking community who already know
about the power and usefulness of model checking, but the software engineering
community. We see our role in the formal methods community to e�ect this
transfer of technology.

We present the gist of our approach in Section 2. Then in Section 3 we give
background information to our case study|our application domain and the
cache coherence problem; and a brief description of the model checker that we
used, SMV, and its input speci�cation language, CTL.We give details of the case
study in Section 4; we used SMV to verify three cache coherence protocols for
distributed �le systems: two implemented for the Andrew File System (AFS)
and one for the Coda File System. In Section 5, we use the case study to
illustrate how we followed our approach; we explain di�erent kinds of speci�c
abstractions that software engineers can in general apply to their systems to
produce �nite state machine models. We discuss related work in Section 6 and
close with conclusions and future work in Section 7.

2 Our Approach: Finding Good Abstractions

The successes in reasoning about hardware systems raise the obvious question:
How can model checking be applied to reasoning about software systems? In this
paper, we elaborate on this answer:

Approach: Model check a �nite state machine abstraction of a
software system.

This approach (see Figure 1) relies on �nding abstraction mappings, A, to apply
to a software system (possibly an in�nite state machine), S, and then subjecting
the abstract model (a �nite machine), M, to a model checker. We use a model
checker as a black box to check M against the speci�cation, �. The model
checker outputs either true, if M satis�es �, or a counterexample, if it does not.

Key to our approach is to exploit the nature of � to determine what abstrac-
tions are reasonable to de�ne and apply. Based on our case study, we broadly
classify the ones we identi�ed as follows (elaborated on in Section 5):

� Exploiting the form of �. In our example, because of the form of our
correctness condition, we use the generalization rule of �rst-order logic to
justify that checking a �nite case su�ces to show that � holds for the
in�nite case.

� Exploiting domain-speci�c knowledge. In our distributed systems domain,
we collapse distinct failures like crashed nodes and links into a single type
of failure. Also, we place a bound on transmission delay, and furthermore
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Figure 1: Model Checking Software

model it as a single step taken by the system's environment. Both ab-
stractions are reasonable since implementors of distributed systems make
similar simpli�cations.

� Exploiting problem-speci�c knowledge. � might express an abstract prop-
erty about an object, not its value. For example, suppose � is a property
about the size of a bounded integer set; we do not care about the value of
the set itself. If the bound is small, we can model each possible size.

The �rst kind of abstraction can be applied to any problem or domain.
The second can be applied when considering any problem for distributed sys-
tems since failures and timing behavior cannot be completely ignored in those
systems. The third class of abstractions, though particularly appropriate for
our case study, are just examples of abstractions that are generally applicable
to other problems. All can be viewed as software design rules (\-of-thumb")
that when applied raise the level at which we can think about the essence of a
software system.

3 Case Study: Cache Coherence Protocols for

Distributed File Systems

In a distributed �le system, servers store �les; clients store local copies of these
�les in their caches. Caching increases performance at the client when con-
nectivity and bandwidth are low, and increases availability and reliability when
temporary failures occur. Clients communicate with servers by exchanging mes-
sages and data (e.g., �les). Clients do not communicate with each other. Each
�le is associated with exactly one designated \home" or authorized server.
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A problem arises when there are several copies of a �le in a system. A �le is
valid if it is the most recent copy in the system. Recency is typically determined
by a timestamp associated with the �le. If a client updates its copy and it is
the most recent update in the system, then all other copies of that �le become
invalid. The goal of a cache coherence protocol is to make sure a client performs
work on only �les it believes are valid.

There are two ways to ensure cache coherence. Either the client asks the
server whether its copy is valid (validation-based) or the server tells the client
when the client's copy is no longer valid (invalidation-based).

Cache coherence in a distributed system is more di�cult to achieve than on a
multiprocessor because of the presence of failures and transmission delay. Thus,
since global knowledge is impossible to achieve in a distributed system [21], we
settle for pairwise knowledge between clients and servers. Our notion of belief
captures this pairwise knowledge [34].

An invariant property to prove of all cache coherence protocols is that if a
client believes that a cached �le is valid, then the server that is the authority
on the �le believes the client's copy is valid. More formally,

CC: 8 C : client : 8 S : server : 8 f : file:
C believes valid(fC) ) S believes valid (fC)

where fC stands for the copy of f at C [34].
A validation-based technique, AFS-1, was used in the Andrew File System

from 1984-1985 [38]; for performance reasons, an invalidation-based technique,
AFS-2, replaced AFS-1 and has been in use in Andrew since 1985 [24]. In
1993 Mummert, as part of her Ph.D. thesis work, started implementing a more
complicated invalidation-based cache coherence protocol [33], similar to AFS-2,
as a variation for the Coda Distributed File System [37]. We call Mummert's
extension to Coda's protocol Coda+. It was this work that inspired our initial
investigation of this case study since Mummert wanted a way to prove formally
that her protocol design was correct. Inspired by the logic of authentication [6],
Mummert et al. [34] formalized the notions of belief and validity, as used above,
and applied the extended logic to reason about cache coherence for AFS-1, AFS-
2, and Mummert's variation of Coda's protocol. The actual proofs were done
by hand. We observed, however, that the state machine models for all protocols
described in [34] are �nite and small|trivial for a model checker. So to complete
the formal analysis, we subjected all three protocols to model checking.

Before we present the details of the examples, we need to give some back-
ground information. We start with an informal description of our system model
for reasoning about cache coherence based on the notion of belief. Assumptions
made for our model are common to all three protocols we analyzed. The system
model and assumptions are taken directly from Mummert et al.'s work in [34].
We then give a brief high-level description of SMV and CTL.
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3.1 System Model and Assumptions

We designate hosts as clients or servers of the �le system. Clients and servers
communicate by sending messages to each other via remote procedure call; each
request made by one party requires a response from the other.

Clients speak only to servers, not to other clients. We assume the underlying
communication protocol addresses end-to-end concerns such as guaranteeing
authenticity and eliminating duplicate messages.

Exactly one repository, which could be one server or a group of servers, is
the authority for each �le system object. In this paper, we use the generic term
\server" for a repository. A �le system object is any data contained by a server
that may be cached at a client, including �les, portions of �les, �le attributes,
or version numbers. For now, it su�ces to think of these objects as �les; later
in Section 4.3 they may also be version numbers.

The local state of a client, C, includes a set of cached data, C:D, and a set of
beliefs, C:B, about objects in its cache. The local state of a server, S, includes
a set of data objects, S:D, for which it is considered the authority, and for each
client C, a set of beliefs, SC :B, that includes which objects are present in C's
cache and their validity.

The global state of the system is a tuple of all clients' and servers' local
states, plus an agreement set ACS , which determines for each data object d

whose authority is S and is cached at C, whether the server and client copies
are equal. State transitions occur when a component of the global state changes.
The agreement set is the state variable used to approximate global knowledge
about the validity of all �les. It represents pairwise knowledge, which is attained
between connected pairs of clients and servers.

We reason about the presence or absence of �le system objects cached at
clients and their validity. An object is valid if it is the most recent copy in
the system. Otherwise, it is invalid. Recency is determined by a timestamp
associated with the �le. The timestamp is replaced whenever the �le is updated.

Since servers may not hear about updates immediately, validity is global
knowledge and cannot always be determined. However, if C and S agree on an
object, and S believes its copy is valid, then C should be able to conclude that
its cached copy is valid. If S receives an update from a client other than C, then
regardless of the global validity of the updated copy, S is justi�ed in telling C

that its copy of the object is now invalid.
A cache coherence protocol de�nes a set of possible runs, i.e., message ex-

changes, between clients and servers about objects. Each run begins with an
initial message and ends with a �nal message; each protocol has a prede�ned
set of initial and �nal messages. Before a run a client considers all objects in
its cache suspect, which means that it does not have a belief on their validity.
During a run clients and servers gain beliefs about cached objects. At the end
of the run, they all discard all their beliefs.

Failures can terminate runs. If failures occur, beliefs are discarded but clients
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do not discard their cached �les. After a run, a client must again consider all
its cached objects suspect because it cannot check if they are valid, nor can the
server notify it that they are not. Failures are detected by message timeouts.
If a message times out, the principal that sent the message considers it a �nal
message. However, if a client and server both believe a run is in progress, then
the run ends once both principals detect the failure.

3.2 SMV and CTL

Users can describe synchronous or asynchronous �nite state machines with the
model checker SMV [31]. Although for our application domain of distributed
systems, it might seem more natural to use an asynchronous model, the protocol
itself is more easily described in terms of a synchronous model. The send of a
client's message corresponds to the receipt of that message by the server, and in
any run of the protocol, the client and server alternate sending messages to each
other. Moreover, since the protocol relies on timeouts for detecting failures, in
fact the actual system can be viewed as synchronous [39]. Thus, we need only
use SMV's synchronous modeling capability.

SMV expects input speci�cations (� of Figure 1) in the form of Computa-
tional Tree Logic (CTL), a subset of branching time temporal logic. A CTL
formula is a boolean expression, an existential (E) path formula, a universal (A)
path formula, or the application of standard boolean operators to CTL formulae.
A path formula is the application of the temporal operators next (X), eventually
(F), or globally (G), to a CTL formula; or the application of until (U) to a pair of
CTL formulae. Put simply, in a quanti�ed CTL formula the temporal operators
always come in pairs of a path quanti�er and a state quanti�er.

CTL formulae are interpreted with respect to an in�nite computation tree
derived from �nite state transition machines. Each path in the tree is a sequence
of states. So, for example, if P is a boolean expression then AG P is a CTL
formula that says \in all paths, in all states P holds", i.e., P is invariant; EF P

says \in some path, there is some state in which P is true" or more informally,
P is potentially true.

We explain as needed further details of SMV and CTL in the examples.

4 The Three Protocols

In this section, we present how we used McMillan's SMV model checker to verify
the AFS-1, AFS-2, and Coda+ protocols. They are small enough to present in
their entirety but \big" enough to let us illustrate common abstractions others
can apply to their own systems. For each example, we discuss the restrictions
of the general model of Section 3.1 and describe the SMV input and output.
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4.1 AFS-1

In AFS-1, a client has two initial states: either it has no �les or it has one or
more �les but no beliefs about their validity. If the protocol starts with the client
having no �le in its cache, then the client may request a copy from the server
and the protocol terminates when the �le is received. If the protocol starts with
the client having suspect �les, then the client may request a validation for a �le
from the server. If the �le is invalid then the client requests a new copy and the
run terminates. If the �le is valid, the protocol simply terminates.

Without loss of generality, we can analyze this cache coherence protocol by
considering one client, C, one server, S, and one �le, f . Implicitly, the system
includes at least one other client to represent remote updates. We can capture
the system state as a tuple of four variables, (C:D;C:B; S:B;A)1, where

� C:D ranges over ; and ffg.

� A ranges over ;; ffC = fSg; ffC 6= fSg.

A run of the protocol maps some initial state (C:Di; C:Bi; S:Bi; Ai) to some
�nal terminating state (C:Dt; C:Bt; S:Bt; At). The state space is restricted in
the following ways. For all states, (C:D;C:B; S:B; A), in a run:

� If f 2 C:D, either fC = fS 2 A or fC 6= fS 2 A. This simply means if
f is cached at C, it either agrees with the copy at S or it does not. If
C:D = ; then A = ;.

� At the end of a run, f is always cached and valid. More formally, C:Dt =
ffg, and At = ffC = fSg.

4.1.1 State Machine Model

The top graph in Figure 2 shows the state transition graphs for the client, and
the bottom, for the server. The nodes are labeled by the value for the state

variable, belief; the arcs, by the name of the message received that causes the
state transition. A run of the protocol begins in an initial state (one of the
leftmost nodes) and ends in a �nal state (one of the rightmost nodes).

The client's belief about a �le ranges over fnofile, valid, invalid, suspectg.
The client's belief is nofile if the client cache is empty; valid, if the client be-
lieves its cached �le is valid; invalid if it believes its cached �le is not valid;
suspect, if it has no belief about the validity of the �le (it could be valid or
invalid).

The server's belief about the �le cached by the client ranges over fvalid,
invalid, noneg. The server's belief is valid if the server believes that the �le
cached at the client is valid; invalid, if the server believes it is not valid; none,

1We do not need S:D because this simpli�ed model includes only one server and one �le.
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Figure 2: State Transition Graphs for AFS-1

if the server has no belief about the existence of the �le in the client's cache or
its validity.

The set of messages that the client may send to the server is ffetch,
validateg. The message fetch stands for a request for the �le. The validate
message is used by the client to determine the validity of the �le in its cache.

The set of messages that the server may send to the client is fval, invalg.
The server sends the val (inval) message to indicate to the client that its
cached �le is valid (invalid).

There are three classes of runs of this protocol, corresponding to the three
paths in the client's state transition diagram: a cache miss, a cache hit with a
successful validation, and a cache hit with a failed validation.

4.1.2 Speci�cation of Cache Coherence in CTL

Given the state variables for a client state machine, Client, and a server state
machine, Server, we can express CC as the following CTL formula:

AG ((Client.belief = valid ) -> (Server.belief = valid))

Recall that in CTL AG P says \for all paths, for all states P" or more informally,
\invariably, everywhere P."
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4.1.3 SMV Input for AFS-1

The SMV input program for AFS-1, shown in Figures 3 and 4, is a textual
representation of the state transition graphs of Figure 2. We show it for com-
pleteness since the transcription of a state transition graph to an SMV program
is straightforward. The �fth line in Figure 3 gives the CTL speci�cation against
which the state machine is checked.

To show how SMV �nds counterexamples, we add in the sixth line another
CTL speci�cation for SMV to check, the converse of our correctness condition:

AG ((Server.belief = valid) -> (Client.belief = valid))

The SMV input program is composed of the modules main, server, and
client. The third and fourth lines declare instances of the server and client
modules.

The module server takes a parameter input that can be any message
coming from the client, indicated by the instantiation of the parameter by
Client.out in the fourth line.

The initial belief of the server is none; the �nal belief is valid. The SMV
init and next functions de�ne the initial value and next-state value for a state
variable. In SMV a case expression returns the value of the �rst expression on
the right hand side of the colon (:), such that the corresponding condition on
the left hand side is true. Cases are evaluated in order. Thus, the �fth case
(1:belief) in the de�nition of the next function for the belief variable is the
catchall \else" case; here it says that belief's value stays the same if none of
the conditions of the previous four cases hold, i.e., the server's belief about the
�le does not change.

The server module has two other state variables besides belief. The out

variable ranges over the messages that the server may send to the client. The
0 message stands for no message and is needed to model the initial state; the
�fth case (1:0) in the de�nition of the next function for the out variable
says that no message is sent if none of the conditions of the previous four cases
hold. The valid-file boolean variable models the e�ect of the environment
as perceived by the server. It is used when the client has a suspect �le in its
cache and requests a validation from the server. We need to model both the
possibility that the server has received an update by some other client and the
possibility that it has not. If an update by some other client has occurred then
the server reects that by nondeterministically setting the value of valid-file
to 0; otherwise, the server sets the value to 1 (the �le cached at the client is still
valid). This nondeterminism is captured in the SMV input program in Figure
3 by the assignment of the set of values f 0,1 g to the variable valid-file.

In the module client, in addition to the state variable belief, as for the
server, we use the out variable to range over the messages that the client may
send to the server. The client's initial belief is nofile or suspect. If the initial
belief is suspect and a failed validation message is received, then the client
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MODULE main -- afs1

VAR

Client : client (Server.out);

Server : server (Client.out);

SPEC AG ((Client.belief = valid) -> (Server.belief = valid))

SPEC AG ((Server.belief = valid) -> (Client.belief = valid))

MODULE server(input)

VAR

out : f 0, val, inval g;
belief : f none, valid,invalid g;
valid-file : boolean;

ASSIGN

valid-file := f 0,1 g;
init(belief) := none;

next(belief) :=

case

(belief = none) & (input = fetch) : valid;

(belief = none) & (input = validate) & valid-file : valid;

(belief = none) & (input = validate) & !valid-file : invalid;

(belief = invalid) & (input = fetch) : valid;

1 : belief;

esac;

init(out) := 0;

next(out) :=

case

(belief = none) & (input = fetch) : val;

(belief = none) & (input = validate) & valid-file : val;

(belief = none) & (input = validate) & !valid-file : inval;

(belief = invalid) & (input = fetch) : val;

1 : 0;

esac;

Figure 3: SMV Input Program for AFS-1: Main and Server Modules
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MODULE client(input)

VAR

out : f0, fetch, validateg;
belief : fvalid, invalid, suspect, nofileg;
ASSIGN

init(belief) := nofile, suspect;

next(belief) :=

case

(belief = nofile) & (input = val) : valid;

(belief = suspect) & (input = val) : valid;

(belief = suspect) & (input = inval) : invalid;

(belief = invalid) & (input = val) : valid;

1: belief;

esac;

init(out) := 0;

next(out) :=

case

(belief = nofile) : fetch;

(belief = invalid) : fetch;

(belief = suspect) : validate;

1 : 0;

esac;

Figure 4: SMV Input Program for AFS-1: Client Module
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-- specification AG (Client.belief = valid -> Server.beli... is true

-- specification AG (Server.belief = valid -> Client.beli... is false

-- as demonstrated by the following execution sequence

state 1.1:

Client.out = 0

Client.belief = nofile

Server.out = 0

Server.belief = none

Server.valid-file = 0

state 1.2:

Client.out = fetch

state 1.3:

Server.out = val

Server.belief = valid

resources used:

user time: 0.133333 s, system time: 0.116667 s

BDD nodes allocated: 1048

Bytes allocated: 917504

BDD nodes representing transition relation: 112 + 1

reachable states: 26 (2^ 4.70044) out of 216 (2^ 7.75489)

Figure 5: SMV Output for AFS-1

believes its �le is invalid. It then sends a fetch message to the server, as
indicated in the de�nition of the transitions for out. The client's �nal belief is
valid.

4.1.4 SMV Output for AFS-1

Figure 5 shows the output of SMV for AFS-1.
SMV indicates that (1) the �rst property, the cache coherence invariant,

is true and (2) the second property, the converse, is false. SMV produces a
counterexample indicated by the sequence of three states named 1.1, 1.2, and
1.3 in the output, where in the �rst state, the initial values of the state variables
are given, and in subsequent states, the new values of only the changed state
variables are given. Thus in the last state of the sequence, the second property
is false since the value of the server's belief variable is valid but that of the
client's is nofile. This counterexample corresponds to the following scenario.
Initially, the client has no �le and the server has no beliefs. The client then
requests a copy from the server. Then, the server receives this fetch request
and sends a copy to the client, believing, of course, that the �le sent and thus
cached by the client is valid. Thus, the server believes the �le is valid, but in
this last state, the client has not received the server's message and still believes
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that it has no �le.
The line after resources used: says that SMV takes fractions of a second

to check both properties and the last line says that the number of reachable
states for AFS-1 is 26.

4.2 AFS-2

The two main di�erences between AFS-1 and AFS-2 are that (1) AFS-2 main-
tains cache coherence using callbacks [24], and (2) it needs to handle the case of
failures. When a client caches a �le, the server promises that it will notify that
client if the �le changes. This is called a callback promise, or simply callback. If
the �le changes, the server's invalidation message is called a callback break.

AFS-2 works as follows. Initially, a client may have one of two beliefs about
a �le. It either believes it has no copy of the �le or it has a suspect copy. If
the client's initial belief is that it has no �le, the client may request a copy
from the server. The server then has a callback on that �le. If the �le is ever
updated, the server noti�es the client and the client discards its copy. If the
client's initial belief is that there is a suspect �le in its cache, the client may
request a validation from the server. If the �le is valid, then the server has a
callback on that �le. If the �le is invalid, the client discards its copy. If at any
time during a run a failure occurs in the system, the clients then consider their
copies of the �le suspect and the server discards its beliefs about the validity of
the �les cached by the clients. The client does not discard the �le, because it is
cheaper to validate the �le when the failure is repaired than to refetch it. We
assume for simplicity that clients do not discard �les for any reason other than
invalidation. Of course, in practice clients may discard �les for other reasons,
such as lack of space.

The values for C:D and A are as for AFS-1 described in Section 4.1. Re-
strictions on the state space are as follows:

1. If f 2 C:D, either fC = fS 2 A or fC 6= fS 2 A. This simply means if
f is cached at C, it either agrees with the copy at S or it does not. If

C:D = ; then A = ;.

2. When an object is invalidated, C must discard it. Then

ffC 6= fSg 2 A) C:Dt = ;

3. At the end of a run, either f is not cached (C:Dt = ;) and A = ;, or f is
cached (C:Dt = ffg) and agrees with the server (At = ffC = fSg).

4.2.1 State Machine Models

For AFS-2, we also consider a simpli�edmodel with just one server, two identical
clients (Client1 and Client2), and one �le. Figure 6 gives the state transition
graphs for each client and the server.
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Figure 6: State Transition Graphs for AFS-2

The client's belief about a �le ranges over fvalid, suspect, nofileg. The
belief valid indicates that the �le is in cache and it is valid; suspect, that
the �le is in cache but the client has no belief about its validity; nofile, that
there is no �le in cache. Since a �le that is believed to be invalid is immediately
discarded by the clients, we have chosen not to represent the belief invalid to
simplify the system.

For each client, the server has a belief about the validity of the �le cached
by that client. Each belief ranges over fvalid, nocallg, where valid indicates
that there is a �le in the client's cache and it is valid; nocall, that the server
has no callback on the �le cached by a client.

The messages that the clients may send to the server are ffetch, validate,
updateg. An update message to the server indicates that the �le cached by the
client has been updated. The server's messages are the same as for AFS-1.

There are �ve classes of runs, corresponding to the �ve paths shown in the
client's state transition diagram:

� cache miss, no failures

� successful validation, no failures

� failed validation, no other failures

� cache miss followed by failure

15



� successful validation followed by failure

Recall that at the beginning of each run, the client neither believes its cached
state is valid, nor believes it invalid.

4.2.2 SMV Input and Output for AFS-2

If we use the same correctness criterion for AFS-2 as we did for AFS-1, SMV
gives a counterexample shown in Figure 7. Our \invariant" is not an invariant!
The reason is that the cache coherence invariant holds for AFS-2 only within
certain timing constraints due to transmission delay. Consider the following
scenario, indicated by the counterexample. Client1 has a valid �le in its cache
and the server has a callback on that �le. Client2 suddenly updates its copy of
the �le. Then the server immediately believes that the �le cached by Client1 is
not valid and sends a message to Client1 to notify it. In this state, Client1 has
not yet received the server's message and it still believes that its �le is valid. So
there is a period of time due to transmission delay during which the invariant
does not hold. Let � represent the upper bound on this time interval, then the
following property is true:

CC0: If a client believes its �le is valid at the present, then before
some past interval of time of length � , the server believed the �le
cached by that client is valid.

In CTL, there are operators about the future, not the past, so we reformulate
this property using its contrapositive. We also model the transmission delay
by the amount of time it takes to go from one state to another, i.e., a single
step. (We justify this aspect of our model in Section 5.2.) This leads us to the
following CTL formula, which is the cache coherence condition (CC 0 above) we
use for AFS-2:

AG ((Server.belief1 = nocall) ->

AX ((Client1.belief = nofile) | (Client1.belief = suspect)))

where AX means \invariably, in the next state."
The SMV input for AFS-2 is similar to that for AFS-1. The system consists

of the instances Client1, Client2, Server, and Env. We introduce the envmodule
(Figure 8), representing the environment, so that we can explicitly model failures
that occur between Client1 and the Server and between Client2 and the Server.
The env module has two state variables failure1 and failure2. Each one of
them can be independently set to 1. Once a variable is set to 1, it remains at
that value for the rest of the run.

The server module has two beliefs, belief1 and belief2. The server

module in AFS-2 is otherwise similar to the server module in AFS-1. The
client module is also similar as that for AFS-1. The only di�erence is that in
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-- specification AG (Client1.belief = valid -> Server.bel... is false

-- as demonstrated by the following execution sequence

state 1.1:

Client1.out = 0

Client1.belief = nofile

Client2.out = 0

Client2.belief = nofile

Server.out1 = 0

Server.out2 = 0

Server.belief1 = nocall

Server.belief2 = nocall

Server.validFile1 = 0

Server.validFile2 = 0

Env.failure1 = 0

Env.failure2 = 0

state 1.2:

Client1.out = fetch

Client2.out = fetch

state 1.3:

Server.out1 = val

Server.out2 = val

Server.belief1 = valid

Server.belief2 = valid

state 1.4:

Client1.belief = valid

Client2.belief = valid

Server.out1 = 0

Server.out2 = 0

state 1.5:

Client1.out = update

Client2.out = update

state 1.6:

Server.out1 = inval

Server.out2 = inval

Server.belief1 = nocall

Server.belief2 = nocall

Figure 7: SMV Counterexample for Incorrect Invariant for AFS-2
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MODULE env

VAR

failure1 : boolean;

failure2 : boolean;

ASSIGN

init(failure1) := 0;

next(failure1) :=

case

!failure1 : f 0,1 g;
1 : 1;

esac;

init(failure2) := 0;

next(failure2) :=

case

!failure2 : 0,1;

1 : 1;

esac;

Figure 8: SMV Environment Module for AFS2

AFS-2 a client may also send an update message to the server when it believes its
�le is valid. This di�erence is captured in the third to last line in the de�nition
of out in the client module.

When SMV checks that the cache coherence invariant (CC0) is true, it uses
a total time of less than .5 seconds; the number of reachable states is 7776.

4.3 Coda+

Coda supports server replication, allowing volumes to be stored on a group of
servers. A volume is a collection of �les forming a partial subtree in the �le name
space [41]. A �le is contained in exactly one volume. The servers on which a
volume is stored is called the volume storage group (VSG). At any time, the
subset of those servers available is called the accessible volume storage group

(AVSG).
The Coda cache coherence protocol is based on the AFS-2 protocol, but

with a group of servers as a repository. Clients contact all servers in the AVSG
(though data is shipped from only one), and all servers maintain callbacks for
objects cached from the VSG. To reason about this protocol, all that is required
is a small change to the de�nition of a run, so that it ends when the AVSG
changes. This is natural because if the AVSG shrinks, there exists the potential
for a lost callback from the server that disappeared. If the AVSG grows, the
additional server may hold updated versions of cached data.

Mummert's large granularity cache coherence protocol extends the Coda
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scheme. To reduce client-server communication in failure-prone environments,
callbacks may be maintained on volumes in addition to or instead of �les. A
callback on a volume constitutes proof that all cached �les in the volume are
valid. To establish a volume callback, the client caches the version number for
the volume. The server increments the volume version number whenever a �le
in that volume is updated.

A run of this protocol concerns a �le f , and optionally the version number
v from volume V containing f . Before requesting v, the client must have at
least one �le in V in its cache, and all cached �les in V must be valid. This
requirement ensures the �les at C correspond to the version number it receives.

A client may validate v just as it would a �le. If it has both �le and volume
state at the beginning of a run, it may validate them in either order. If a
client validates v successfully, it receives a callback for the volume. No further
communication is necessary to read any �le in the volume until the callback is
broken or a failure occurs.

Thus, Coda+ is complicated by the addition of a new type of cached data,
called a volume. This addition leads to a richer state space, more state transi-
tions, and more cases in which failures can arise. For example, whereas AFS-2
has only �ve classes of runs, the Coda+ protocol has �fteen. Though one could
argue that analyzing AFS-1 and AFS-2 using mechanical tools like model check-
ers is overkill, Coda+ is large enough to warrant validation beyond pencil-and-
paper analysis.

We model this cache coherence protocol by considering one client, C, one
server, S, one �le, f , and one volume V with version number v. The system
state is again a tuple of four variables, (C:D;C:B; S:B;A), where

� C:D ranges over ;; ffg; and ff; vg. This means if the volume version
number is cached then so is a �le from that volume.

� A is the agreement set on the cached objects. It ranges over the following
values:

;; ffC = fSg; ffC 6= fSg; ffC = fS ; vC = vSg

ffC = fS ; vC 6= vSg; ffC 6= fS ; vC 6= vSg

Note that because the volume version number is updated whenever an object
in the volume is updated, it is not possible for f to be invalid and v to be valid
at the same time.

A run of the protocol maps some initial state (C:Di; C:Bi; S:Bi; Ai) to some
terminating state (C:Dt; C:Bt; S:Bt; At). The state space is restricted in the
following ways. For all states, (C:D;C:B; S:B;A), in a run:

1. For each object d (f or v) in C:D, dC = dS or dC 6= dS must be in A. If
C:D = ; then A = ;.
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2. When an object is invalidated, the client must discard it. An invalidation
for the �le is an implicit invalidation for the volume. More precisely,

(fC 6= fS ) 2 A) C:Dt = ;

(vC 6= vS) 2 A) v =2 C:Dt

3. At the end of a run, either d is not cached, or it is cached and agrees with
the server. This follows from 2 above, because once the client discovers d
is invalid it discards it. Thus At = ; or At = fdC = dSg.

4.3.1 State Machine Model

For the Coda+ model, we consider one server, two identical clients, one �le,
and one volume version number. To model failures, we also use an environment
module that is identical to that of AFS-2.

The server now has four beliefs, two for the �les cached by the clients and
two for their cached version numbers. These beliefs can take the values valid
and nocall. The server does not have an explicit invalid belief.

Each of the clients has two beliefs. One belief is about the validity of the
�le and ranges over fvalid, suspect, nofileg. The other belief is about
the validity of the volume version number and ranges over fvalid, suspect,

nonumberg. The belief nonumber indicates that there is no volume version num-
ber in cache.

The messages sent to the server by the clients range over fFfetch, Fvalidate,

Fupdate, Vfetch, Vvalidate, Vupdateg. The messages that the server sends
to the clients range over fFval, Finval, Vval, Vinvalg. Messages starting
with a V (F) relate to the version numbers (�les).

Figures 9 and 10 give the state transition diagrams for a Coda+ client and
server. Each node is labeled by the value of the belief about the �le and the
value of the belief about the volume version number. Each arc is labeled by the
name of the message received by the client (server).

4.3.2 SMV Input and Output for Coda+

We omit the actual SMV input and output for Coda+ since they are similar to
that for AFS-1 and AFS-2 (see [42] for details). The property we check is the
same cache coherence property, CC0, as that checked for AFS-2 (since we need
to take into account transmission delay for Coda+ too).

SMV's output for Coda+ indicates that the cache coherence invariant (CC 0)
is true. SMV takes less than one second to check 43,684 reachable states.
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Figure 9: State Transition Diagram for Coda+ Client

5 Discussion: Di�erent Kinds of Abstractions

What made it possible for us to use model checking in our case study is that we
chose di�erent abstraction mappings to apply to the real system. We certainly
did not check the actual C code that implements AFS-1, AFS-2, or Coda+, but
then the level at which we would want to verify a protocol like cache coherence
is much higher than the code level; if the design is incorrect or incomplete
(misses some cases) then the code is apt to reect those mistakes and omissions.

Designs, especially for distributed systems protocols, are thus good subjects for
model checking.

In this section we explain in more detail some of the abstraction mappings
that we applied, which can be used more generally in other settings. We exploit
(1) the form of the property, � to be satis�ed, (2) domain-speci�c knowledge,
and (3) problem-speci�c knowledge.

5.1 Exploiting the Form of �

In a real instance of a distributed �le system like Andrew or Coda, there are an
unbounded number of �les, clients, and servers. To analyze the state space of a
real instance would be beyond the capability of any model checker today.
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If � is in the form of 8x:P (x) then if for any instance, a, proving P (a) will
let us deduce � by the generalization rule from logic:

P (a)
8x:P (x)

Our cache coherence invariant (CC ) is stated as \for all clients, for all servers,
for all �les : : :." Thus, for example, for AFS-1, we simply successively apply the
generalization rule three times upon proving the property for a model with just
one client, one server, and one �le.

Roscoe and MacCarthy make a similar point in their work using FDR to
model check data-independent properties of concurrent processes [36]; Wolper
provides a formal justi�cation for data-independence [43]. Dams, Grumberg,
and Gerth use the idea of exploiting the form of � in extending abstract in-
terpretation to nondeterministic systems; they consider two di�erent subsets of
CTL*, universal CTL* and existential CTL* [15], where path quanti�ers are
restricted to be only of one kind (universal or existential).

5.2 Exploiting Domain-Speci�c Knowledge

In our domain of distributed systems, we need to worry about failures and trans-
mission delays. First, we abstract from di�erent types of failures like crashed
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nodes and downed communication links since our protocols act the same regard-
less of the type of failure. We do, however, need to model that a failure may
occur; we use an environment machine (env) to model this possibility. We also
need to model that clients and servers can detect a failure; we use the failure1
and failure2 parameters for this purpose.

Second, transmission delay in conjunction with failures complicate reasoning
about correctness in distributed systems. During the interval in which a message
is traveling, the sender may have made some state change which will render the
correctness condition false until the receiver processes the message and changes
its state. Transmission delay is loosely bounded by the timeout period used
by the underlying communication protocol, denoted by �. It also takes time
for clients and servers to detect failures. The interval between the occurrence
of a failure and its detection, denoted by � , de�nes a window of vulnerability.
To bound the failure detection interval, clients and servers probe each other
periodically, and declare failures if messages time out. Let � be the probe
interval and assume that clients and servers use the same probe interval, but do
not necessarily probe each other at the same time. Then the failure detection
interval is at most � = � + �. In Coda � is composed of a probe interval of 10
minutes and a message timeout of 15 seconds.

We abstract from the exact times that contribute to � and model this interval
as a single step in a state machine. This interpretation lets us characterize the
correctness condition, CC0, in terms of the next-state temporal logic operator
(AX) rather than the original, simpler CC. If transmission were instantaneous
and there were no failures, there would be no need for modeling � since client
and server beliefs could be updated simultaneously.

In e�ect, � lets us represent transmission delay inherent in any distributed
system. We represent � by a single step transition in SMV since we can view
this time delay as another kind of state transition e�ected by the environment.
We did not model this environment's e�ect explicitly, as we did failures, but
rather implicitly by exploiting SMV's model of synchronous state machines (and
the implicit presence of a global clock). Thus the passage of time in SMV
corresponds to the passage of time needed in the protocol. Only a single step is
needed since we assume clients and servers will detect failures within � in which
case the run of the protocol ends.

Pong and Dubois exploit knowledge of their domain in choosing abstrac-
tions for verifying cache coherence protocols for shared memory multiprocessor
systems [35] (a di�erent domain from ours since we have a di�erent model of
communication and we need to deal with faults). They observe that correctness
of a cache coherence protocol for those systems is not dependent on the exact
number of cached copies, which in general could be unbounded. Rather, states
need to keep track of whether the caches have 0, 1, or multiple copies, thereby
reducing the possibilities to just three from an unbounded number. Pong and
Dubois devise a symbolic state expansion procedure that intimately relies on this
insight.
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5.3 Exploiting Problem-Speci�c Knowledge

We use � to drive the choice of \appropriate" abstractions. For example, if � is
a property about an integer, x, we may care only that x is negative, positive, or
zero. We can de�ne an abstraction function that maps an in�nite set of values
to three values. Or, if � is a property about an integer set, s, we may care only
about whether the set is empty or not; we may not care at all about what its
elements are. We can de�ne an abstraction function that maps an in�nite set
of set values to two values.

In our problem of cache coherence between clients and servers, the property
� that we want to verify is that the client's beliefs about the validity of cached
�les are consistent with a server's beliefs. We let � guide us in determining what
details of the real system we can safely ignore.

First, we abstract from the clients' caches, i.e., sets of �les and volume
version numbers. Since we have simpli�ed our model to handle just one �le, we
need only model whether the cache, C; is empty or not. In the case of AFS-1
and AFS-2, C = ; or C = ffg; for Coda+, C can additionally be ff; vg. This
abstraction gives us two (or three) cases to consider instead of an exponential
number of cases (2n) for an unbounded number, n, of �les and volumes. Note
also that we never have to consider the case of the cache value, fvg, since the
protocol prohibits a volume version number from being cached if a �le is not
also cached.

Second, we need only represent the belief a client has about the cached �le.
We do not need to model sets of beliefs (given we have only one �le or one
volume version number about which to have a belief). For example, for AFS-2,
in reality, we might have a cache, C, and a belief set B (for �le f), that ranges
over ; and fvalid(f)g. Combined with the abstraction above, where we consider
a simpli�cation of the cache, rather than two state variables, we need only one
(belief), and rather than four possibilities (2�2), we need represent only three.
We de�ne a (partial) abstraction function, A; that maps a pair hC;Bi to a belief
in fvalid; nofile;suspectg:

h ffg; fvalid(f)g i 7! valid

h ;; fvalid(f)g i 7! ? (unreachable case)
h ffg; ; i 7! suspect

h ;; ; i 7! nofile

For Coda+, we apply a similar abstraction for beliefs about the volume ver-
sion number since it also can take only three possible values, valid, suspect,
nonumber. Also, for Coda+ we do not need to consider all nine possible combi-
nations of beliefs for the �le and volume version number since two of them are
impossible, again knowing that a volume version number is cached if and only
if a �le (in that volume) is cached. (To be pedantic, in Figure 9, only seven pos-
sible combinations of the values for the �le and volume version numbers appear
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in the nodes.)
Third, we do not even need to model the �le itself since we do not care at

all about the contents (value) of the �le. We would if we needed to compare
the values of two di�erent �les or extract information about the �le based on
its value. Thus, we identify the transmission of the �le with the transmission
of the message about the �le; for example, in AFS-2, the val message can be
thought of as abstractly containing the �le itself as well as the status about its
validity.

Fourth, we abstract from the type of data cached. In the AFS protocols,
the types include �les and directories. For our analysis, however, that there are
di�erent types of data is completely irrelevant to the correctness of the protocol.
We use the generic term \�le" to stand for any kind of data. However, in
Coda+, a third type, volumes, is treated di�erently, and thus must be modeled
explicitly; as mentioned earlier, it is this new data type that complicates the
Coda protocol.

Fifth, we abstract from the notion of validity, which in practice is determined
by the recency of a �le. Suppose as in the implementation, recency is determined
by comparing the totally ordered timestamps associated with �les. For any pair
of timestamped �les, ft1 and ft2, we can determine whether one is more recent by
comparing their timestamps, t1 < t2; but since this always returns true or false,
we can model recency, and hence validity, as a boolean variable representing
whether a �le is valid or not. This abstraction appears explicitly in the way we
use the valid-file boolean variable in the server module, letting the server
nondeterministically choose between the two possibilities.

Finally, we abstract from individual runs of protocol. We consider classes of
runs, categorized by a protocol's sets of initial and �nal states. For Coda+, this
reduces the number of cases to consider from forty-four to �fteen (corresponding
to the �fteen paths in the client state transition diagram of Figure 9) [34].

6 Related Work

Model checking originated with Clarke and Emerson's work in 1981 [9]. As
mentioned in the introduction, it has already proven to be extremely successful
in debugging hardware [5, 16, 32, 11, 10, 4]. Tool support for model checking
includes SMV [31], FDR [19], COSPAN [22], the Concurrency Workbench [12],
Mur� [17], and Mec [2]. There are more and more documented case studies; for
example, the proceedings of the 1995 Workshop of Industrial-Strength Formal
Techniques contains four model checking case study papers [20].

We are not the �rst to explore the use of model checking in the software do-
main. Three other approaches complement ours and each other. Since they are
all recent (dated 1993-94), we expect that over time results from one approach
will carry over to the others.

� Atlee and Gannon follow a speci�cation-language based approach [3].
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They verify safety properties for event-driven systems described by the
SCR tabular requirements language. Their case studies include an auto-
mobile cruise control system and a water-level monitoring system. They
show how to represent any speci�cation written in a subset of SCR as
a �nite state machine. They use an extended version of SMV for their
model checker.

� Jackson explores the richness of types in software systems. State variables
for hardware (and SCR) are of simple types like boolean, but in software
they range over more complex type like sets, graphs, and relations. He
exploits symmetry in mathematical relations to reduce the state space;
he shows how to model check Z speci�cations [26], which is essentially
based on his relational calculus. His Nitpick tool implements his model
enumeration method [27].

� Allen and Garlan's use of model checking focuses at the level of soft-
ware architecture, a level of abstraction far above the real system, but
again where many design aws can be detected. They use FDR to detect
deadlocks in software architectures described in the Wright architectural
description language [1]. Wright is based on a subset of CSP, and thus it
leaves states completely uninterpreted.

Our approach complements all three of the above since in each case, the re-
searchers �rst build some �nite model of the real system and express it in terms
of SCR, Z, or Wright. In doing so, they implicitly apply the kinds of abstrac-
tions we used in our examples. By restricting themselves to a speci�c language,
they have the advantage of avoiding having to de�ne di�erent abstractions per
problem, since they do this mapping once and for all. In our approach, we let �
drive the choice of abstractions and simply express our models directly in terms
of SMV input. We have the advantages of bypassing the \intermediate" speci-
�cation language translation step, and of not being restricted to the domain of
systems that a given speci�cation language is most suited for describing. Thus,
our focus is on �nding \appropriate" abstractions that work across di�erent do-
mains and di�erent problems, not on checking models expressed in a particular
speci�cation language.

Cheung and Kramer's two-step analysis approach applied to reasoning about
large-scale distributed systems is similar in spirit to ours [8]. They use dataow
analysis as a way to approximate a system's behavior and then contextual anal-
ysis to do an exhaustive search of the resulting state space.

Approaches to combine model checking with theorem proving include work
by Hungar[25] and Kurshan and Lamport[28], and in tools such as the Stanford
Temporal Prover (STeP) [30] and SRI's PVS [40]2. Relevant to our approach of
using abstraction mappings, Havelund and Shankar used PVS to justify formally

2April 1995 version.
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an abstraction mapping they use in a case study on a bounded retransmission
protocol [23]; the point behind their case study was to compare the performance
of Dill's model checker Mur� [17], SMV, and the PVS model checker on a �nite
abstraction of the protocol.

Finally, we could have used other, more general, proof-based approaches such
as Unity [7] or I/O automata [29], than the Burrows-Abadi-Needham Logic of
Authentication, to reason about our protocol examples; however, the particular
proof system in which we do our reasoning is secondary to the main point of
this paper. Rather, we show that we can take a �nite state model such as that
which was already developed (using the BAN logic) in Mummert et al. [34] and
\feed it" into an existing model checker. More importantly, the point of this
paper is to encourage the software engineering community to consider seriously
model checking technology and tools for reasoning about software systems.

7 Conclusions and Future Directions

Model checking has the signi�cant advantage over more traditional forms of
software veri�cation in that much of the hard work is done automatically by the
machine. Moreover, both the inputs and the results of model checking tools are
straightforward to understand by non-experts: since a model checker's interface
is well-de�ned and it is straightforward to provide its expected inputs, we can
readily use it as a \black box." This suggests that for gaining assurance about
software, model checking can become a technology that is much more broadly
accessible to practitioners than other techniques.

The choice of what abstractions to apply takes some good judgment. After
all, we could de�ne a model of a system that is so abstract that any property
would be trivially satis�ed or that would allow any possible concrete realiza-
tion. Further research is needed to characterize more formally what makes an
abstraction \good."

Another direction of further research is to devise ways to justify abstractions
formally. Ideally, a property shown to be true of a �nite abstraction of a system
should be true of the original system. One way to justify an abstraction for-
mally is to restrict the speci�cation language, e.g., the approach taken by Dams,
Grumberg, and Gerth. Another way is to prove that an abstraction preserves
the correctness properties of interest, which is what Havelund and Shankar do
using PVS, a theorem prover, in their bounded retransmission protocol example.
Ironically, theorem proving is still required; the expectation is that the theorem
to be proved is \smaller" than that corresponding to proving the property of
the original system.

To make our reasoning more precise, we need to justify the abstractions we
chose in this case study; however, as stated in the introduction, the goal of
our work is to demonstrate to builders of large software systems that \approxi-
mate" reasoning by use of model checking is a low-cost, yet highly e�ective way
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of debugging system designs. Our choice of abstractions were guided entirely
by either our own intuition or that of the original �le system designers and
implementers. Even based on this imprecise method of choosing abstractions,
software engineers can use our approach to gain greater con�dence in and a
better understanding of their systems. More research needs to be done in devel-
oping methods and tools to enable more precise reasoning, while maintaining a
low-cost to using them.

We lack a formal justi�cation of our abstractions. To give one requires a
formal model of the original protocols; this does not exist. The protocols as
presented in the literature are either given a one-paragraph textual description
or a lengthy textual description that reveals implementation details (like the
�elds in the C structs) that completely obscure how the protocol works. Indeed
the �rst formalization of these protocols is given in the Mummert et al. paper
[34], which we have reproduced in part in Sections 3.1, 4.1.1, 4.2.1, and 4.3.1.
This formalization is also an abstraction of the real system.

In our own work, toward making progress both in demonstrating feasibility
and in understanding characteristics of good abstractions, we plan to push on
more examples. We have recently applied the approach described in this paper
to validate recovery protocols [13] for redundant disk arrays, in particular for
the RAID Level-5 architecture. We are just beginning to work on protocols
proposed and in use for electronic commerce. Our primary goal is to provide
more convincing evidence to systems designers and builders that formal rea-
soning tools are ready for day-to-day use. As a useful by-product, we expect
to identify other kinds of abstractions appropriate to apply to real software
systems.

We are optimistic about the future of the use of automated tools like model
checkers to reason about software systems. One way to measure the practicality
of such tools is by how easy they are to teach and learn. The second author did
the model checking case study in this paper as part of her senior honor's thesis
and took a graduate-level course regularly taught by Professor Clarke on model
checking. In CMU's Master's of Software Engineering core course on Analysis
of Software Artifacts, we have students do a series of three two-week projects
using SMV, Nitpick, and FDR; students in the MSE course on Architectures of
Software Systems also use FDR to analyze Wright speci�cations.
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